Acknowledgements—This work was supported by PHS Grants GM 37948 and AA 07698 and a Grant-in-Aid from the Georgia Affiliate of the American Heart Association. The authors thank Ms. Cheryle Marquis for her assistance in preparing the manuscript.

*Department of Pharmacology and Toxicology, and
‡Department of ROBERT L. DENNISON*‡
Anesthesiology
Medical College of Georgia
Augusta, GA 30912-2300, U.S.A.

REFERENCES

- Sprague DH, Yang JC and Ngai SH, Effects of isoflurane and halothane on contractility and the cyclic 3',5'-adenosine monophosphate system in the rat aorta. Anesthesiology 40: 162-170, 1974.
- Aronstam RS, Anthony BL and Dennison RL Jr, Halothane effects on muscarinic acetylcholine receptor binding in rat brain. *Biochem Pharmacol* 35: 667-672, 1986.
- 3. Dennison RL, Anthony BL, Narayanan TK and Aronstam RS, Effects of halothane on high affinity agonist binding and guanine nucleotide sensitivity of muscarinic acetylcholine receptors from rat brainstem. *Neuropharmacology* 16: 1201-1205, 1987.
- Anthony BL, Dennison RL and Aronstam RS, Disruption of muscarinic receptor-G protein coupling is a general property of liquid volatile anesthetics. *Neurosci Lett* 99: 191-196, 1989.
- Narayanan TK, Confer RA, Dennison RL, Anthony BL and Aronstam RS, Halothane attenuation of muscarinic inhibition of adenylate cyclase in rat heart. Biochem Pharmacol 37: 1219-1223, 1988.
- † Present address: Smith, Kline & French Laboratories, L-511, 709 Sweland Road, King of Prussia, PA 19406.
- § Address correspondence to: Robert S. Aronstam, Ph.D., Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912-2300.

- Salomon U, Londos C and Rodbell MA, A highly sensitive adenylate cyclase assay. Anal Biochem 58: 541-548, 1974.
- 7. Mao CC and Guidotti A, Simultaneous isolation of adenosine 3',5'-monophosphate (cAMP) and guanosine 3',5'-monophosphate (cGMP) in small tissue samples. *Anal Biochem* 59: 63-68, 1974.
- Triner L, Vulliemoz Y and Verosky M, The action of halothane on adenylate cyclase. *Mol Pharmacol* 13: 976-979, 1977.
- Kent DW, Halsey MJ, Eger EI and Kent B, Isoflurane anesthesia and pressure antagonism in mice. Anesth Analg 56: 97-101, 1977.
- Koblin DD, Eger EI, Johnson BH, Collins P, Harper MH, Terrell RC and Speers L, Minimum alveolar concentrations and oil/gas partition coefficients of four anesthetic isomers. *Anesthesiology* 54: 314-317, 1981.
- Schofield PR and Abbott A, Molecular pharmacology and drug action: Structural information casts light on ligand binding. Trends Pharmacol Sci 10: 207-212, 1989.
- Seamon KB, Padgett W and Daly JW, Forskolin: Unique diterpence activator of adenylate cyclase in membranes and in intact cells. *Proc Natl Acad Sci USA* 76: 3363-3367, 1981.
- Green DA and Clark RB, Direct evidence for the role of the coupling proteins in forskolin activation of adenylate cyclase. J Cyclic Nucleotide Res 8: 337-346, 1982.
- Helmreich EJ and Pfeuffer T, Regulation of signal transduction by β-adrenergic hormone receptors. Trends Pharmacol Sci 6: 438-443, 1985.
- 15. Murad F, Chi Y-M and Sutherland EW, Adenyl cyclase III. The effect of catecholamines and choline esters on the formation of adenosine 3',5'-phosphate by preparations from cardiac muscle and liver. *J Biol Chem* 237: 1233-1238, 1962.
- Hildebrandt JD, Sekura RD, Codina J, Iyengar R, Manclark CR and Birnbaumer L, Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins. *Nature* 302: 706-709, 1983.

Biochemical Pharmacology, Vol. 40, No. 2, pp. 379-382, 1990. Printed in Great Britain.

0006-2952/90 \$3.00 + 0.00 © 1990. Pergamon Press plc

The effect of schistosomiasis on the covalent binding of 2-acetylaminofluorene to mouse liver macromolecules in vivo and in vitro

(Received 3 January 1989; accepted 5 March 1990)

Aromatic amines such as 2-acetylaminofluorene (AAF) have been shown to be carcinogenic in many animal species including humans, rodents, rabbits and dogs [1]. AAF undergoes metabolic activation via N-hydroxylation [2, 3] to yield the compound N-hydroxy-2-acetylaminofluorene (N-OH-AAF), the proximate carcinogenic metabolite which is sulfated to form the ultimate carcinogen [4]. The cellular nucleophiles that react covalently with the active metabolite of AAF in vivo have been identified to be proteins [5, 6], DNA [7] and glycogen [8]. The binding of AAF to microsomal protein and nuclear DNA in vitro has also been demonstrated [9, 10]. It is the formation of the carcinogen-macromolecular adducts that is thought to lead to the toxic and carcinogenic effects of the compound.

The response of animals to carcinogens may be modified by parasitic infection. Infected animals develop increased susceptibility to toxins and neoplasia [11-13]. To investigate the effect of parasite infection on metabolic activation of chemical carcinogens, we monitored the binding of AAF to macromolecules in schistosome-infected and non-infected mice both *in vivo* and *in vitro*.

Materials and Methods

Treatment of animals. Eight-week-old BALB/c mice were randomly divided into two groups. One group was infected with 30 Schistosoma mansoni cercariae per mouse using the method of Moore et al. [14] while the other group served as the control. After infection, the two groups were

Table 1. The effect of schistosomiasis on microsome-mediated binding of AAF to DNA and protein

Assay	Non-infected§	Infected§
DPM/mg DNA*	1674 ± 258‡	988 ± 95‡
DPM/mg microsomal protein*	1129 ± 418	909 ± 134
Cytochrome P450†	$0.73 \pm 0.03 \ddagger$	$0.49 \pm 0.02 \pm$
Total microsomal protein/liver	$32.1 \pm 2.9 \ddagger$	$25.4 \pm 2.3 \ddagger$

- * Data represents means of duplicate incubations each for N = 4.
- † nmoles/mg microsomal protein.
- ‡ Difference statistically significant (Student's t-test, P = 0.01).
- § Data presented as mean \pm SD.

kept under the same conditions and fed Purina Lab Chow and tap water ad lib. for 12 weeks.

Microsome-mediated binding of AAF to DNA and protein in vitro. Animals from each group were killed and hepatic microsomes prepared by high speed centrifugation [15]. Microsomes were stored at -70° until used. The incubation medium and conditions for microsome-mediated binding to calf thymus DNA and protein were as described by Gurtoo et al. [16] except that 0.01 µCi [14C]AAF (0.44 mM AAF) was used and incubation was for 60 min at 37° with shaking. Equivalent amounts of microsomal protein were used from control and infected animals at 0.9 and 2.0 mg/ mL in incubations for binding to DNA and to protein, respectively. The [14C]AAF-alkylated DNA was isolated from the reaction mixture [17], redissolved in 0.5 mL of 0.015 M NaCl-0.0015 M sodium citrate (pH 7.0) and dialysed against four changes of 0.01 M Tris-HCl-1 mM EDTA, (pH 7.0). Duplicate 50-μL aliquots of each sample were counted whilst the remaining fraction was used for determination of DNA concentration [18]. The reaction to determine AAF-binding to microsomal protein was terminated by addition of 20% TCA. Unbound radioactivity was removed by four washings of the protein precipitate with ether-ethanol (1:1). The precipitate was then hydrolysed with 2 mL 1 M NaOH at 60° for 1 hr after which 1.0mL aliquots were taken for determination of radioactivity and protein [19]. Hepatic microsomal cytochrome P450 was determined according to the method of Omura and Sato

Covalent binding of AAF to liver macromolecules in vivo. Each animal from both groups was treated with a single intraperitoneal injection of $0.1\,\mu\mathrm{Ci}$ [$^{14}\mathrm{C}$]AAF ($9\,\mu\mathrm{g}$ AAF in $10\,\mu\mathrm{L}$ ethanol). Three animals from each group were killed at each of the following time intervals after treatment with AAF: 1 hr, 6 hr, 18 hr and 1 week. The livers were removed, washed with chilled 0.9% NaCl and stored at -70° until analysed. For analysis, each liver was homogenized in 0.15 M NaCl-0.015 M sodium citrate (pH 7.0) and DNA, RNA and protein isolated [21]. Aliquots of the macromolecules were counted and specific activities calculated after assay of DNA [18], RNA [22] and protein [19].

Results and Discussion

Pathology typical of S. mansoni infection was evident in infected mice, with livers showing enlargement secondary to the formation of granulomas around parasite eggs. Average mass of infected livers was 2.6 ± 0.1 g versus 1.6 ± 0.1 g for uninfected livers. Data on microsome-mediated binding of [14C]AAF to calf thymus DNA and microsomal protein are shown in Table 1. Liver microsomes obtained from infected animals demonstrated a 42% decreased capacity to mediate covalent binding of AAF to DNA. In contrast, the covalent binding of AAF to microsomal protein was unchanged in microsomes from infected compared to noninfected animals. If results are calculated in terms of binding to macromolecules (DPM) per nanomole of cytochrome P450 no statistically significant differences in binding to DNA or protein is observed. It appears that it is depressed levels of cytochrome P450 that are responsible for the decreased binding of AAF to DNA in vitro.

Figure 1 shows the specific activities of DNA, RNA and

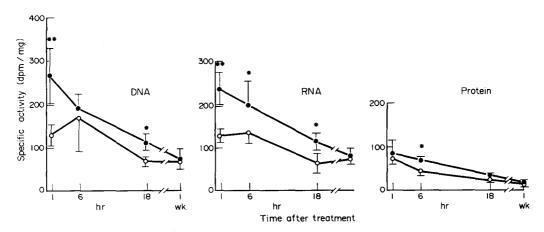


Fig. 1. Specific activities of DNA, RNA and filter bound protein isolated from livers of S. mansoni-infected (○) and non-infected (●) mice at various times after treatment with [¹⁴C]AAF. Difference between infected and non-infected mice statistically significant at ** P < 0.001 and * P < 0.01.

protein isolated from livers of infected and non-infected animals at different time intervals after treatment with [14C]AAF. The yields of DNA from infected and control livers was comparable but the yields of RNA and protein from infected livers were 50 and 75% of controls, respectively. Extent of binding of AAF to macromolecules was generally less in infected mice up to 18 hr after treatment. By 1 week the difference between infected and non-infected mice had disappeared. It is generally accepted that the binding of a chemical carcinogen to DNA is a critical step in tumour induction and that covalent binding of a compound in vitro and in vivo to DNA correlates well with its carcinogenicity. The results reported here for AAF are therefore in contrast to reports showing increased tumourigenicity of chemical carcinogens, including AAF [13], in schistosome-infected animals [12, 23]. Previous work in this laboratory, however, on the covalent binding of aflatoxin B₁ to DNA, RNA and protein in schistosome-infected animals is consistent with the results reported here [24]. In addition, the results are consistent with studies showing that S. mansoni infection decreases levels of hepatic drug metabolizing enzymes [25]. It appears that there is no simple relationship between tumour induction and levels of carcinogen-DNA binding in schistosome-infected mice. In the light of the current views of carcinogenesis [26] it is possible that, although the initiating event in chemical carcinogenesis (i.e. metabolic activation of the carcinogen) may be depressed in schistomiasis, the later stages in the multistep process maybe altered such that promotion and progression are enhanced in S. mansoni infected animals.

In summary: the covalent binding of [14C]acetylamino-fluorene (AAF) to macromolecules in vivo and in vitro was measured in Schistosoma mansoni-infected and in non-infected mice. Liver microsomes from infected mice demonstrated a 42% decreased capacity to mediate covalent binding of AAF to DNA. In addition, the extent of binding of AAF to liver macromolecules in vivo was generally less in infected than non-infected mice.

Acknowledgements—This work was supported by the University of Zimbabwe Research Board, the Kapnek Charitable Trust and the International Foundation for Sciences.

ANDREW H. SIWELA*

CLEVER B. NYATHI†

JULIA A. HASLER‡§

CHRISTOPHER J. CHETSANGA‡

Departments of ‡ Biochemistry and † Preclinical Veterinary Studies University of Zimbabwe Mount Pleasant Harare Zimbabwe * Department of Research and Specialist Services Chemistry and Soil Research Institute Special Analysis Laboratory Ĉauseway Harare

REFERENCES

- Kriek E, Carcinogenesis by aromatic amines. Biochim Biophys Acta 355: 177-203, 1974.
- Crammer JW, Miller JA and Miller EC, N-Hydroxylation: a new metabolic reaction observed in the rat with the carcinogen 2-acetylaminofluorene. J Biol Chem 235: 885-888, 1960.
 - § To whom correspondence should be addressed.

- Irving CC, Species and tissue variation in the metabolic activation of aromatic amines. In: Carcinogen Identification and Mechanism of Action (Eds. Griffith AC and Shaw CR), pp. 211-227. Raven Press, New York, 1979
- De baun JR, Miller EC and Miller JA, N-Hydroxy-2acetylaminofluorene sulfotransferase. Its probable role in carcinogenesis and protein-(methion-syl) binding in rat liver. Cancer Res 30: 577-595, 1970.
- Barry EJ, Ovenchka CA and Gutman HR, Interaction of aromatic amines with rat liver proteins in vivo. II. Binding of N-2-fluorenylacetamide 9-14C to nuclear proteins. J Biol Chem 243: 51-60, 1968.
- Barry EJ, Malejka-Giganti D and Gutman HR, Interaction of aromatic amines with rat liver proteins in vivo. III. Mechanism of binding of the carcinogen N-2-fluorenylacetamide to the soluble proteins. Chem Biol Interact 1: 139-143, 1969.
- Irving CC, Veazey RA and Williand RT, The significance and mechanism of binding of 2-acetylamino-fluorene to rat liver nucleic acids in vivo. Chem Biol Interact 1: 3-12, 1967.
- 8. Farber E, Biochemistry of carcinogenesis. *Cancer Res* **28**: 1859–1868, 1968.
- Kadherbhai MA, Bradshaw TK and Friedman RB, Specific labelling of microsomal proteins by reactive intermediates generated from 2-acetylaminofluorene in vitro. Chem Biol Interact 36: 211-227, 1981.
- Stout DL, Heminki K and Becker FF, Covalent binding of 2-acetylaminofluorene to rat liver nuclear DNA and protein in vitro. Cancer Res 40: 2279-3384, 1980.
- Gentile JM and de Ruiter E, Promutagen activation in parasite infected organisms: Preliminary observations with Fasciola hepatica-infected mice and aflatoxin B₁. Toxicol Lett 8: 273-282, 1981.
- Domingo EO, Warren KS and Stenger RJ, Increased incidence of hepatoma in mice with chronic schistosomiasis mansoni treated with a carcinogen. Am J Pathol 51: 307-321, 1967.
- Kakizoe Y, The influence of Schistosoma mansoni on carcinogenesis in mouse livers initiated by N-2-fluorenylacetamide. Kurume Med J 32: 169-178, 1985.
- Moore DV, Yolles TK and Melloney HE, A comparison of common laboratory animals as experimental hosts for Schistosoma mansoni. J Parasitol 35: 156-159, 1948.
- Van der Hoeven T, Isolation of hepatic microsomes by polyethylene glycol 6000 fractionation of the post mitochondrial fraction. *Anal Biochem* 115: 398–402, 1981.
- Gurtoo HL, Motycka LE and Parker NB, Sex dependence of the metabolic activation in vitro of the mycohepatocarcinogen aflatoxin B₁. J Med 7: 1-12, 1976.
- Chetsanga CJ and Frenette GP, Excission of aflatoxin B₁ imidazole ring opened guanine adducts from DNA by formamidopyrimidine DNA glycosylase. Carcinogenesis 4: 997-1000, 1983.
- Burton K, Determination of DNA concentration with diphenylamine. In: Methods in Enzymology (Eds. Grossman L and Moldave K), Vol. 12B, pp. 686-693. Academic Press, New York, 1968.
- Lowry OH, Rosebrough NJ, Farr AL and Randall RJ, Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275, 1951.
- Omura T and Sato R, The carbon monoxide binding pigment of liver microsomes. I. Evidence for its haemoprotein nature. J Biol Chem 239: 2370-2378, 1964.
- Kennel D, Use of filters to separate radioactivity in RNA, DNA and protein. In: *Methods in Enzymology* (Eds. Grossman L and Moldave K), Vol. 12A, pp. 686-693, 1968.

- 22. Ceriotti G, Determination of nucleic acids in animal tissues. *J Biol Chem* 214: 59-70, 1955.
- 23. Haese W and Bueding E, Long term hepatocellular effects of hycanthone and two antischistosomal drugs in mice infected with Schistosoma mansoni. J Pharmacol Exp Ther 197: 703-713, 1976.
- Hasler JA, Siwela AH, Nyathi CB and Chetsanga CJ, The effect of schistosomiasis on the activation of aflatoxin B₁. Res Comm Chem Pathol Pharmacol 51: 421– 423, 1986.
- Cha YN and Edwards R, Effect of Schistosoma mansoni infection on drug metabolizing capacity of mice. J Pharmacol Exp Ther 199: 423-430, 1976.
- Cerutti PA, Response modification creates promotability in multistage carcinogenesis. Carcinogenesis 9: 519-526, 1988.

Biochemical Pharmacology, Vol. 40, No. 2, pp. 382-384, 1990. Printed in Great Britain.

0006-2952/90 \$3.00 + 0.00 © 1990, Pergamon Press plc

Modulation of μ_1 , μ_2 , and δ opioid binding by divalent cations

(Received 5 September 1989; accepted 31 January 1990)

The importance of divalent cations on opiate receptor binding was first demonstrated prior to the identification of the various different receptor subtypes [1]. In these studies divalent cations, especially manganese, enhanced the binding of agonist ligands. This action was most pronounced in the presence of sodium chloride, which greatly reduces agonist binding [2]. Since the identification of receptor binding subtypes [3-8], the issue of divalent cations has been explored by a number of laboratories [9-12]. These reports confirmed the earlier report and extended the findings to both μ and δ receptors. Recently we examined the effects of magnesium on μ_1 binding using a selective assay [13]. In this study we also observed a significant potentiation of μ_1 binding in the presence of magnesium. Most of the previous studies examined μ and δ binding sites but did not address the issue of multiple μ receptors. One report noting the ability of magnesium to increase both μ_1 and μ_2 binding did not study other cations [11]. In the present study we have examined the sensitivity of μ_1 , μ_2 and δ binding to magnesium, manganese and calcium.

Materials and Methods

All radioligands and Formula 963 scintillation fluor were purchased from the New England Nuclear Corp. (Boston, MA). Fresh calf brains were obtained locally, dissected into the appropriate brain region, and prepared as previously reported and frozen [13]. Stored at -70° , tissue binding is stable for at least 1 month. All binding was performed in potassium phosphate buffer (50 mM; pH 7.0) for 150 min at 25° and assays were filtered over Whatman B glass fiber filters using a Brandel Cell Harvester. Mu1 binding was determined in thalamic homogenates (2 mL; 15 mg wet weight tissue/mL) using [3H][D-Ala2,D-Leu5]enkephalin (DADL; 39.9 Ci/mmol, 0.8 mM) in the presence of [D-Pen², D-Pen⁵ Jenkephalin (DPDPE) (10 nM). The inclusion of DPDPE eliminates the δ labeling of [3H]DADL, leaving only μ_1 binding. [3H][D-Ser², Leu⁵]enkephalin-Thr⁶ (DSLET) has a binding selectivity profile very similar to that of [3H]DADL; it also labels μ_1 sites in the presence of DPDPE (10 nM). Mu₂ binding was determined in thalamic homogenates (2 mL; 15 mg wet weight tissue/mL) using [3H][D-Ala2,MePhe4,Gly(ol)5enkephalin (DAGO; 30.3 Ci/mmol, 0.8 nM) in the presence of DSLET (5 nM). Since [3H]DAGO labels both μ_1 and μ_2 sites, DSLET is included to inhibit μ_1 binding. DADL also can be used in the assay to inhibit the μ_1 component of [3H]DAGO binding. Delta binding was determined in homogenates of frontal cortex (2 mL; 15 mg wet weight tissue/mL) using the highly δ -selective ligand [3 H]DPDPE (51.5 Ci/mmol, 0.5 nM). All determinations were performed in triplicate within an assay, and each experiment was replicated at least three times. Nonspecific binding was determined in the presence of levallorphan (1 μ M). Only specific binding is reported. All values are presented as means \pm SE. Statistical evaluations were determined using analysis of variance. K_{D} and B_{\max} values were determined by nonlinear regression analysis of the saturation data [13].

Results and Discussion

First, we examined the effects of increasing concentrations of the different cations in the three binding assays. Magnesium sulfate at concentrations ranging from 10 to 50 mM increased μ_1 binding over 3-fold (Fig. 1A), a result similar to that previously reported [13]. Although magnesium sulfate also increased the binding in the μ_2 and δ assays, the increases were far less (approximately 50%). Half-maximal increases by magnesium sulfate were similar for all the assays examined, approximately 1 mM. Previous work has established that magnesium chloride and magnesium sulfate affect opioid binding in a similar manner [1, 13].

Manganese chloride had a similar effect, increasing the binding in the μ_1 assay by over 2-fold with a maximal effect between 0.1 and 1 mM (Fig. 1B), a concentration less than that seen with the magnesium sulfate. However, the increases produced by manganese chloride were far less than those elicited by magnesium ions. Manganese chloride had a far less pronounced action on μ_2 and δ binding than on μ_1 binding. Calcium chloride also increased binding with results quite similar to those observed with manganese chloride (Fig. 1C). Little effect was seen on either the μ_2 or the δ assays, whereas we observed approximately a 75–80% increase in the μ_1 assay.

We next examined the effects of these ions on the affinity (K_D) and the B_{\max} of the three assays (Fig. 2). Manganese and magnesium both increased δ binding predominantly through increases in the B_{\max} . In contrast, the effects of the different cations were more complicated in both of the μ assays. Of the different ligands examined, magnesium produced the largest increase in B_{\max} and affinity.

Magnesium ions greatly prolonged the dissociation of [3 H]DADL in the μ_{1} binding assay [13]. In the present assay, we examined the effects of calcium and manganese ions on the dissociation of [3 H]DADL in a μ_{1} selective